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LONG TERM GOALS 

The long-term science question addressed by the SW2013 experiment (relevant to this proposal) is to 
advance understanding of the seabed mechanisms that control clutter and diffuse reverberation 

OBJECTIVES 

The specific goals are to: 1) quantify seabed physical properties and their spatial (vertical and 
horizontal) variability and uncertainties and 2) based on the spatial variability make and test hypotheses 
about the mechanisms that control clutter and diffuse reverberation. 

APPROACH 

The observational approach is based on direct path measurements of seabed reflection. The key 
advantages of this approach are: high resolution (0.1 m vertically, 1-10 m laterally); relatively modest 
uncertainties [1] including those from the space/time varying oceanography and biology; and that low 
source levels are possible. The main challenge is that water depth, 20 m, is 4 times smaller than what 
has been achieved in the past which poses challenges for multipath separation and separation of angle 
dependence from lateral variability. The latter problem arises due to the small Fresnel zone size coupled 
with the shorter scales of seabed lateral variability that occur for iimer shelf environments. 

WORK COMPLETED 

The tasks in FY14 were analysis of TREX13: 1) wide angle seabed reflection data and 2) normal 
incidence seabed reflection data. 

RESULTS 

Wide angle seabed reflection measurements i| |,|| n 11 
Wide angle seabed reflection data collected and processed in FY13 were analyzed to extract the 
geoacoustic properties as a function of depth and frequency at two sites: one on a ridge crest along the 
clutter track, and one in a swale near the main reverberation line, see Fig 1. 
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Figure 1. TREX bathymetry (from DeMoustier and Kraft) with wide angle reflection sites (*) along 
clutter track (Site C) and main reverberation line (Site 2). 

Measured reflection coefficient data R as a function of frequency (1.4-12 kHz) and angle (15-47°) at 
Site 2 are shown in Fig 2a. Before discussing these data, it is helpful to consider measurements from a 
mid-shelf region (Fig 2b), which show an interference pattern caused by classical quarter-wave 
(kjzdj=m7c/2) and half-wavelength resonances (kjzdj=m7t) where kjz is the vertical component of the 
wavenumber in the jth layer, dj is layer thickness, and m is an integer. From these simple equations, it 
can be seen that the evolution of these resonances across frequency/angle space is a function of the 
layer sound speed and thickness. The amplitudes of the peaks and valleys can be shown to be a function 
of the attenuation and the density. Thus, wide angle reflection data contain a great deal of information 
about the geoacoustic properties; for example, with known angle and frequency, the data immediately 
yield sound speed and layer thickness. Over the years, a robust probabilistic approach has been 
developed to capture all the geoacoustic properties and their uncertainties (e.g., see [2]). However, this 
approach failed on the data shown in Fig 2a. This was surprising inasmuch as dozens of prior 
measurements (of which Fig 2b is one example) have always yielded meaningful results. These 
measurements have been conducted in a wide variety of settings in widely varying locations (Straits of 
Sicily, the northern Tyrrhenian Sea, the New Jersey shelf, and the Scotian Shelf). One significant 
difference is that our prior measurements were all on the mid to outer shelf (80-180 m water depth). 
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Figure 2 seabed reflection coefficient at a) TRFX13 Site 2 and b) on the mid-shelf south of Sicily. 



The reason why our method failed was that (for the first time in our experience), the assumption of a 
plane-layered medium failed (which is assumed in our forward model). For example note that in Fig 
2a, below about 38° there is evidence of resonance effects due to layering. However, at and above 38°, 
the evolution of the resonances changes. This non-stationarity in R means that the across the relatively 
small aperture of the measurement (spanning just 18 m) there is a marked change in the layering 
structure of the seabed. Variable bathymetry was investigated as being an alternative contributor to the 
spatially non-stationary data; however the de Moustier/Kraft multibeam data showed a flat bottom with 
a small slope, 0.1°. An additional piece of evidence that supports variable sub-bottom structure is that 
the seabed reflected path arrival times are consistent with a flat and only slightly tilted seabed. 

Though the planned geoacoustic analysis is not possible, the data reveal a valuable and important 
seabed characteristic, namely that there is significant lateral variability in the swale on lateral scales of 
1-10 m. This scale of variability is expected to impact both propagafion and reverberafion. 

The measured data do provide a rough indication or limit on the sound speed. Due to the absence of a 
crifical angle at Site 2 above -16°, the sound speed must be less than about 1585 m/s. Wide angle 
reflection measurements at the crest of the clutter site showed a markedly different critical angle, 
corresponding to a sound speed roughly of 1680 m/s. However, the full geoacoustic inversion 
technique at the clutter site also failed; its fi-equency-angle behavior also showed strong lateral seabed 
variability at the 1 -10 m scale which explains the failure of the method. 

Normal incidence seabed reflection coefficients 
Normal incidence reflectivity was measured as shown in Figure 3 where the source and receiver were 
suspended below a small catamaran (about 2 x 2 m) which was towed behind R/V Quest at about 3 
knots. The source was the same used for the wide angle measurements but the receiver was a 
hydrophone approximately 2 m above the source on the same tow line. The system was towed along 7 
bearings at 3 sites, but equipment problems rendered data only along one leg at one site viable. 
Fortuitously, this leg (black line in Figure 4a) was close to the Site 2 wide angle reflection track (short 
red line). Thus, part of the analysis motivation was to detect laterally varying seabed structure that 
could be responsible for the non-stationarity of the reflection data (e.g., Figure 2a at 38°). 

The magnitude of the peak broadband (1.4-12 kHz) bottom reflection coefficient was formed by taking 
the ratio on every ping of the bottom reflected path and the direct path (see Fig 3), correcting each for 
spherical spreading. Source amplitude variations were negligible, but were accounted for. The results 
were initially averaged over a lateral extent on the seabed of-2.25 m (3 pings) and are shown in Figure 
4b (blue line).    Note the substantial drop in reflectivity at -13.36 hr., where the change is almost a 
factor of 2 in amplitude. Both system (e.g., source depth or amplitude variation) and environmental 
factors to explain this drop were explored. It was concluded that the observed variations are not due 
system effects; both the source and receiver were essentially omnidirectional, so motion from towing 
would have negligible impact and the source-receiver positions were carefully measured on each ping. 
The variability in the reflection coefficient must be due to seabed effects. 

The two strong reflection peaks at - hour 13.385 were examined on an individual ping basis and it was 
found that these peaks occur at single pings (Fresnel zone about 1.5 m). This 'glint-like' behavior 
together with the non-negligible overlap in seabed illuminated area between pings can most easily be 
explained by focusing from bathymetric curvature. The increased reflectivity at hour 13.39 by contrast 
occurs over many consecutive pings and has a spectral peak around 4-5 kHz, whereas the rest of the 



track has its main spectral content at 2-4 kHz. The specific cause of the 4-5 kHz peak is not known at 
present, but seems likely due to sediment geoacoustic variability, possibly due to changes in layering. 
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Figure 3 a) cartoon of normal incident seabed reflection experiment.  The source (red) is nominally at 
a depth of 10.2 m and the receiver (•) is 2.17m above the source. The source depth varied by ±0.5 m 
but is known to high precision being measured both by a pressure sensor and acoustically using time of 
flight to known boundaries (sea surface and bottom). The relative source-receiver distance had very 
small oscillatory excursions during the run of ±0.015 m.  b) A typical example of the received signal 
showing the direct, surface, and bottom reflected paths. 

There is a spatial periodicity clearly observed in the reflection data (see blue curve in Fig. 4b). The 
main peak of the spatial periodicity is at 26 m with a secondary peak at 43 m [3]. These periodicities 
do not correspond with any motion of the source or receiver, thus they are not artifacts related to system 
effects. It is possible that there are small scale bedforms unresolved in the bathymetry leading to either 
slight focusing and defocusing or that the bedforms or other processes lead to fluctuations on that scale. 

A comparison between reflectivity and bathymetry is shown in Fig 4c. It should be noted first that the 
reflection data positions may be biased forward along the track by a few meters (perhaps up to 10 m). 
That is, the source and receiver trailed slightly (an unknown distance) behind the GPS sensor fixed on 
the back of the catamaran. Positional errors on the extracted multibeam data are unknown but 
presumably small. It is important to observe that the bathymetry varies only 30 cm along the track; the 
changes are minor. 

One salient point is the lack of obvious correlation between the reflection coefficient and the 
bathymetry. The sand ridge crest peak (13.342 hr.) is separated by more than 80 m from the peak of the 
reflection coefficient (13.358 hr.). Also, near the end of the track, there is a sharp rise in the reflection 
coefficient, but the bathymetry is nearly flat.   Only the central and lowest part of the track has a 
reasonable correlation with the lowest reflection coefficient values. 

The reflection data suggest four regimes, which are delineated in Fig 4b,c in the vertical dotted cyan 
lines and numbered 1 to 4. Regime 1 seems related to the sand ridge crest, but oddly, the reflection 
coefficient steadily increases fi"om the stoss side to almost precisely halfway down the lee side (fi-om 
ridge peak to trough). At this point there is a rapid drop in reflectivity and this zone is called Regime 2. 



Regime 3 has generally low reflectivity values (with many peaks) and corresponds with the deepest part 
of the bathymetry. At about 13.402 hr, the reflectivity rises sharply (Regime 4) even faster than the 
decline in Regime 2. The final portion of the track looks similar in reflectivity values to Regime 1, 
though with a steeper slope. 
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Figure 4. Bathymetry (left) in meters with normal incidence reflection track (black) trending southeast. 
The Site 2 wide-angle reflection track is shown in red trending west-southwest and the main 
reverberation line in white dash-dotted line, b) Normal incidence reflection coeflicient data (blue) 
along with interpreted 'reflection regimes' (cyan dotted lines and numbers) and a smoothedflt (red) to 
the data, c) Along-track bathymetry (10 m resolution data from Chris DeMoustier and Barb Kraft). 
The tick mark spacing in time corresponds to -55 meters in distance. The total track length is 440 m. 

In an effort to understand the possible underlying geoacoustic variability along this track, the density 
and sound speed were first estimated at the average value of the simplest regimes 1 and 3 (shown in 
black dash-dotted line). It is well-known that there are numerous difficulties (i.e., ambiguities) in 
estimating density and sound speed from normal incidence reflection data. Reflection amplitudes are 
influenced by many mechanisms including roughness, sediment volume scattering, seafloor curvature, 
layering and impedance. Resolving individual contributions is generally not possible and for simplicity 
here all mechanisms are ignored except the latter, i.e., the seafloor is assumed to be a perfectly flat 
homogeneous halfspace for each consecutive ping. With this tacit assumption, it is possible to estimate 
the along-track sediment impedance Z (product of density and sound speed) knowing the seawater 
impedance Zo 

Z = Z„(l + R(;r/2))(l-R(;r/2))-' 

From the impedance, the sediment sound speed and density are estimated from the empirical relations 
of Bachman [4]. These assumptions applied to Regime 1 (R=0.336) result in a sound speed of 1684 



m/s and density of 1.87 g/cm^ which compare well with the estimated sound speed (from the critical 
angle) of 1680 m/s from the wide-angle data at a ridge crest along the clutter track. The two crests are 
about 6 km apart, but the congruence of the sound speed suggests ridge crest geoacoustic properties 
may be similar in this region, hi the swale, Regime 2 (R=0.195) yields a sound speed of 1544 m/s and 
a density of 1.68 g/cm^. This is in concordance with the neaby Site 2 wide-angle measurements which 
indicated that the sound speed must be less than about 1585 m/s. 

The fact that the approximate and average results in regime 1 and 2, do not appear to be in gross error, 
suggested that including all the regimes would not be unreasonable. In the present analysis, smoothing 
was performed such that only relatively large-scale fluctuations with a high probability of being related 
to geoacoustic variability were preserved. The smoothed reflection data for this part of the analysis is 
shown in Fig 4b in the red line. 
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Figure 5. Estimated density and sound speed from smoothed normal incidence reflection data along a 
track (see red line in Figure 4b) from northwest to southeast near the TREX13 main reverberation line. 
The tick mark spacing in time is about 55 meters in distance. 

The result of applying the flat homogeneous assumptions and the empirical equations to the spatially 
smoothed reflection data is shown in Fig 5. Note that there is a substantial variation in both density and 
sound speed across the short track. This is somewhat surprising given that the swale and crest differ in 
water depth only by 0.3 m. It is not understood at this time why the geoacoustic properties (impedance) 
increase from the ridge stoss side to the crest and then continue increasing until halfway down the lee 
side. 



The lower sound speed and density in the swale (Regime 3) implies a higher concentration of clay and 
silt particles than on the ridge.    In the swale there is a significant (ostensible) change in impedance at 
hour 13.39 which may represent a band of coarser grained sediment. The width of the band is about 22 
m, which is comparable to the secondary peak in the spatial periodicity (at 43 m for a full cycle, 21.5m 
for a half cycle or band). The lateral heterogeneity observed at 13.39 hr. is quite close to the wide angle 
reflection Site 2 location, and may be related to the (unknown) feature that yielded strong lateral 
heterogeneity at that site (see Fig 2 a). 

In summary the major observations from the wide angle R(9, f) and normal incidence R{n/2, f) 
reflection measurements are that 

• There is a very distinct difference from sediments between ridge swale (main line) and ridge 
crest (clutter line)    (\R(9,f) \) 

• The geoacoustic properties at ridge crests are similar along the clutter line and main line (based 
on 1 correlation i\R(0,f)\ & \R(7r/2,f)\) 

• There are 4 distinct geoacoustic regimes that appear loosely correlated with bathymetry: stoss to 
lee side of crest, halfway down the lee side to the base of the swale, the swale, and the transition 
between the swale and the stoss side of the ridge crest. This was based on \R(7z/2,J)\ only along 
one track. 

• Strong geoacoustic variations occur in the swale (|i?(';T/^^|) 
• Bulk density and sound speeds can be estimated with certain assumptions that do not seem 

unreasonable, {\R(7i/2,j)\) 
• There are strong lateral heterogeneities of order 1-10 m in sub-bottom, this was observed at both 

locations. Site C and Site 2 {\R(0,f)\) 
• There are strong sediment lateral heterogeneities of order 10-100 m (\R(n/2,f) \) 
• The lateral scales of sediment variability in this irmer shelf environment (-20 m) is markedly 

different than lateral scales in (dozens of) measurements on mid to outer shelf environments, 
based on observations of layer resonance stationarity. 

The observations raise a number of science questions: 
• How does the TREX13 lateral heterogeneity at 1-10 m scale affect propagation? reverberation? 

(Since we can detect it, but not quantify it here we are unable to answer that question) 
• What geologic processes are responsible for the detected lateral heterogeneity? 
• Is the lateral heterogeneity we see here a "tip of the iceberg" in terms of a possible dominant 

scattering mechanism? 
• Can information about the lateral heterogeneities be extracted from wide angle reflection data 

(an inverse point-of-view)? Inspection of the wide-angle data suggest that separating the 
intermingled angle and offset dependence may be possible in an objective probabilistic fashion 
exploiting sections of the data that are stationary, i.e., exhibit a resonance structure consistent 
with plane-layering. This would be a significant step to perform detailed geoacoustic estimation 
in areas of strongly lateral variability (this was not explored here). 

IMPACT/APPLICATIONS 

The derived geoacoustic model from the reflection data will aid in propagation, reverberation and 
clutter modeling. The strong sediment lateral variability has a number of implications. For example, 



the 1-10 m scale lateral scales of sediment variability in this inner shelf environment are markedly 
different than lateral scales in dozens of reflections measurements conducted in mid to outer shelf 
environments. Thus, caution should be exercised in applying generalizations from TREX13 inner shelf 
observations to mid-to-outer shelf operational enviroimients. 

RELATED PROJECTS 

ONR Seabed Geoacoustic Structure at the Meso-Scale: that project developed the machinery (forward 
models and inverse methods in collaboration with Jan Dettmer and Stan Dosso at UVic) for estimating 
geoacoustic properties and their frequency dependencies in complex, dispersive, layered media. 
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